Development of Artificial Neural Networks to Predict the Effect of Tractor Speed on Soil Compaction Using Penetrologger Test Results

Author:

Khemis Chiheb,Abrougui KhaoulaORCID,Mohammadi AliORCID,Gabsi Karim,Dorbolo Stéphane,Mercatoris BenoîtORCID,Mutuku Eunice,Cornelis Wim,Chehaibi Sayed

Abstract

African agriculture is adversely impacted by arable soil compaction, the degree of which is affected by the speed at which the tractor is maneuvered on the fields, which affects the degree of soil compaction. However, there is no reliable, existing mathematical correlation between the extent of compaction on the one hand, and the tractor speed/s and soil moisture levels on the other. This paper bridges this gap in knowledge by resorting to the artificial neural networks (ANNs) method to predict the effects of tractor speed and soil moisture on the state of soil compaction. The models were ‘trained’ with penetration resistance (CPR) and bulk density test data obtained from field measurements. The resulting correlation coefficient (R = 0.9) showed good compliance of the prediction made with the ANN models with on-field data. It follows, thereby, that the model developed by the authors in this study can be effectively used for predicting the effects of speed, soil density, and moisture content on compaction of alluvial, poorly developed soil with much greater precision, thereby providing guidance to farmers around the world.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3