Recent Approaches to Design and Analysis of Electrical Impedance Systems for Single Cells Using Machine Learning

Author:

Ferguson Caroline1,Zhang Yu1,Palego Cristiano2ORCID,Cheng Xuanhong13ORCID

Affiliation:

1. Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA

2. Department of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 2DG, UK

3. Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA

Abstract

Individual cells have many unique properties that can be quantified to develop a holistic understanding of a population. This can include understanding population characteristics, identifying subpopulations, or elucidating outlier characteristics that may be indicators of disease. Electrical impedance measurements are rapid and label-free for the monitoring of single cells and generate large datasets of many cells at single or multiple frequencies. To increase the accuracy and sensitivity of measurements and define the relationships between impedance and biological features, many electrical measurement systems have incorporated machine learning (ML) paradigms for control and analysis. Considering the difficulty capturing complex relationships using traditional modelling and statistical methods due to population heterogeneity, ML offers an exciting approach to the systemic collection and analysis of electrical properties in a data-driven way. In this work, we discuss incorporation of ML to improve the field of electrical single cell analysis by addressing the design challenges to manipulate single cells and sophisticated analysis of electrical properties that distinguish cellular changes. Looking forward, we emphasize the opportunity to build on integrated systems to address common challenges in data quality and generalizability to save time and resources at every step in electrical measurement of single cells.

Funder

NSF-ECCS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3