IoT Data Quality Assessment Framework Using Adaptive Weighted Estimation Fusion

Author:

Byabazaire John1ORCID,O’Hare Gregory M. P.12ORCID,Collier Rem1ORCID,Delaney Declan3ORCID

Affiliation:

1. School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland

2. School of Computer Science and Statistics, Trinity College Dublin, D02 PN40 Dublin, Ireland

3. School of Electrical and Electronic Engineering, University College Dublin, D04 V1W8 Dublin, Ireland

Abstract

Timely data quality assessment has been shown to be crucial for the development of IoT-based applications. Different IoT applications’ varying data quality requirements pose a challenge, as each application requires a unique data quality process. This creates scalability issues as the number of applications increases, and it also has financial implications, as it would require a separate data pipeline for each application. To address this challenge, this paper proposes a novel approach integrating fusion methods into end-to-end data quality assessment to cater to different applications within a single data pipeline. By using real-time and historical analytics, the study investigates the effects of each fusion method on the resulting data quality score and how this can be used to support different applications. The study results, based on two real-world datasets, indicate that Kalman fusion had a higher overall mean quality score than Adaptive weighted fusion and Naïve fusion. However, Kalman fusion also had a higher computational burden on the system. The proposed solution offers a flexible and efficient approach to addressing IoT applications’ diverse data quality needs within a single data pipeline.

Funder

SFI Strategic Partnership Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive data quality scoring operations framework using drift-aware mechanism for industrial applications;Journal of Systems and Software;2024-11

2. Towards Trust-Based Data Weighting in Machine Learning;2023 IEEE 31st International Conference on Network Protocols (ICNP);2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3