Aquila Optimization Algorithm for Wind Energy Potential Assessment Relying on Weibull Parameters Estimation

Author:

Abou El-Ela Adel A.,El-Sehiemy Ragab A.ORCID,Shaheen Abdullah M.ORCID,Shalaby Ayman S.

Abstract

Statistical distribution approaches have been developed to describe wind data due to the intermittent and unpredictable nature of wind speed. The Weibull distribution with two parameters is thought to be the most accurate distribution for modeling wind data. This study seeks wind energy assessment via searching for the optimal estimation of the Weibull parameters. For this target, analytical and heuristic methods are investigated. The analytical methods involve the maximum likelihood, moment, energy pattern factor, and empirical methods, while the heuristic optimization algorithms include particle warm optimization and the Aquila optimizer (AO). Both analytical and heuristic methods are assessed together to fit the probability density function of wind data. In addition, nine models are submitted to find the most appropriate model to represent wind energy production. The error between actual and estimated wind energy density is computed to the model for each study site which has less error of energy. The fit test is performed with real data for the Zafarana and Shark El-Ouinate sites in Egypt for a year. Additionally, different indicators of fitness properties are assessed, such as the root mean square error, determination coefficient (R2), mean absolute error, and wind production deviation. The simulation results declare that the proposed AO optimization algorithm offers greater accuracy than several optimization algorithms in the literature for estimating the Weibull parameters. Furthermore, statistical analysis of the compared methods demonstrates the high stability of the AO algorithm. Thus, the proposed AO has greater accuracy and more stability in the obtained outcomes for Weibull parameters and wind energy calculations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3