Numerical Analysis of Aeroacoustic Phenomena Generated by Truck Platoons

Author:

Hamiga Władysław Marek,Ciesielka Wojciech Bronisław

Abstract

In recent years there has been dynamic progress in the development of fully autonomous trucks and their combination and coordination into sets of vehicles moving behind each other within short distances, i.e., platooning. Numerous reports from around the world present significant benefits of platooning for the environment due to reduced emissions, reduced fuel costs, and improved logistics in the transport industry. This paper presents original aerodynamic and aeroacoustic studies of identical truck column models. They are divided into four main stages. In the first, a truck model and three columns of identical trucks with different distances between the vehicles was made and tested using computational fluid dynamics (CFD). Two turbulence models were used in the study: k−ω shear stress transport (SST) and large eddy simulation (LES). The aim of the work was to determine the drag coefficients for each set of vehicles. The second stage of work included determination of sound field distributions generated by moving vehicles. Using the Ffowcs Williams–Hawkings (FW-H) analogy, the sound pressure levels were determined, followed by the sound pressure levels A. In order to verify the correctness of the work carried out, field tests were also performed and additional acoustic calculations were carried out using the NMPB-Routes-2008 and ISO 9613-2 models. Calculations were performed using SoundPlan software. The performed tests showed good quality of the built aerodynamic and aeroacoustic models. The results presented in this paper have a universal character and can be used to build intelligent transport systems (ITSs) and intelligent environmental management systems (IEMSs) for municipalities, counties, cities, and urban agglomerations by taking into account the platooning process.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference55 articles.

1. Autonomous Transport of the Future (Autonomiczny Transport Przyszłości);Darowska,2020

2. Towards Innovative Freight and Logistics,2016

3. Automated Truck Platoon Control and Field Test;Lu,2014

4. Organization and Operation of Electronically Coupled Truck Platoons on German Motorways;Kunze,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3