Run-Of-River Small Hydropower Plants as Hydro-Resilience Assets against Climate Change

Author:

Skoulikaris CharalamposORCID

Abstract

Renewable energy sources, due to their direct (e.g., wind turbines) or indirect (e.g., hydropower, with precipitation being the generator of runoff) dependence on climatic variables, are foreseen to be affected by climate change. In this research, two run-of-river small hydropower plants (SHPPs) located at different water districts in Greece are being calibrated and validated, in order to be simulated in terms of future power production under climate change conditions. In doing so, future river discharges derived by the forcing of a hydrology model, by three Regional Climate Models under two Representative Concentration Pathways, are used as inputs for the simulation of the SHPPs. The research concludes, by comparing the outputs of short-term (2031–2060) and long-term (2071–2100) future periods to a reference period (1971–2000), that in the case of a significant projected decrease in river discharges (~25–30%), a relevant important decrease in the simulated future power generation is foreseen (~20–25%). On the other hand, in the decline projections of smaller discharges (up to ~15%) the generated energy depends on the intermonthly variations of the river runoff, establishing that runoff decreases in the wet months of the year have much lower impact on the produced energy than those occurring in the dry months. The latter is attributed to the non-existence of reservoirs that control the operation of run-of-river SHPPs; nevertheless, these types of hydropower plants can partially remediate the energy losses, since they are taking advantage of low flows for hydropower production. Hence, run-of-river SHPPs are designated as important hydro-resilience assets against the projected surface water availability decrease due to climate change.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference80 articles.

1. Hydropower IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation;Kumar,2011

2. Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale

3. Electricity Production, Consumption and Market Overview for Year 2019https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview

4. Hydropower Europehttps://hydropower-europe.eu/about-hydropower-europe/hydropower-energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3