Predicting Volatility Index According to Technical Index and Economic Indicators on the Basis of Deep Learning Algorithm

Author:

Daniali Sara MehrabORCID,Barykin Sergey EvgenievichORCID,Kapustina Irina Vasilievna,Mohammadbeigi Khortabi FarzinORCID,Sergeev Sergey MikhailovichORCID,Kalinina Olga Vladimirovna,Mikhaylov AlexeyORCID,Veynberg Roman,Zasova Liubov,Senjyu TomonobuORCID

Abstract

The Volatility Index (VIX) is a real-time index that has been used as the first measure to quantify market expectations for volatility, which affects the financial market as a main actor of the overall economy that is sensitive to the environmental and social aspects of investors and companies. The VIX is calculated using option prices for the S&P 500 Index (SPX) and is expressed as a percentage. Taking into account that VIX only shows the implicit volatility of the S&P 500 for the next 30 days, the authors develop a model for a near-optimal state trying to avoid uncertainty and insufficient accuracy. The researchers are trying to make a contribution to the theory of socially responsible portfolio management. The developed approach allows potential investments to make decisions regarding such important topics as ethical investing, performance analysis, as well as sustainable investment strategies. The approach of this research allows to use deep probabilistic convolutional neural networks based on conditional variance as a linear function of errors with the aim of estimating and predicting the VIX. For this purpose, the use of technical indicators and economic indexes such as Chicago Board Options Exchange (CBOE) VIX and S&P 500 is considered. The results of estimating and predicting the VIX with the proposed method indicate high precision and create a certainty in modeling to achieve the goals.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3