Abstract
Multivariate time series with missing data is ubiquitous when the streaming data is collected by sensors or any other recording instruments. For instance, the outdoor sensors gathering different meteorological variables may encounter low material sensitivity to specific situations, leading to incomplete information gathering. This is problematic in time series prediction with massive missingness and different missing rate of variables. Contribution addressing this problem on the regression task of meteorological datasets by employing Long Short-Term Memory (LSTM), capable of controlling the information flow with its memory unit, is still missing. In this paper, we propose a novel model called forward and backward variable-sensitive LSTM (FBVS-LSTM) consisting of two decay mechanisms and some informative data. The model inputs are mainly the missing indicator, time intervals of missingness in both forward and backward direction and missing rate of each variable. We employ this information to address the so-called missing not at random (MNAR) mechanism. Separately learning the features of each parameter, the model becomes adapted to deal with massive missingness. We conduct our experiment on three real-world datasets for the air pollution forecasting. The results demonstrate that our model performed well along with other LSTM-derivation models in terms of prediction accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference40 articles.
1. Prediction of multivariate time series by autoregressive model fitting
2. Study of Nonlinear Multivariate Time Series Prediction Based on Neural Networks;Han,2005
3. Multivariate Time Series Prediction Based on Multi-Output Support Vector Regression;Cai,2014
4. Multivariate time series forecasting via attention-based encoder–decoder framework
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献