Bottleneck Detection in Modular Construction Factories Using Computer Vision

Author:

Panahi Roshan1ORCID,Louis Joseph1,Podder Ankur2,Swanson Colby3,Pless Shanti2ORCID

Affiliation:

1. School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA

2. Research Engineer, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA

3. Momentum Innovation Group, Jersey City, NJ 07302, USA

Abstract

The construction industry is increasingly adopting off-site and modular construction methods due to the advantages offered in terms of safety, quality, and productivity for construction projects. Despite the advantages promised by this method of construction, modular construction factories still rely on manually-intensive work, which can lead to highly variable cycle times. As a result, these factories experience bottlenecks in production that can reduce productivity and cause delays to modular integrated construction projects. To remedy this effect, computer vision-based methods have been proposed to monitor the progress of work in modular construction factories. However, these methods fail to account for changes in the appearance of the modular units during production, they are difficult to adapt to other stations and factories, and they require a significant amount of annotation effort. Due to these drawbacks, this paper proposes a computer vision-based progress monitoring method that is easy to adapt to different stations and factories and relies only on two image annotations per station. In doing so, the Scale-invariant feature transform (SIFT) method is used to identify the presence of modular units at workstations, and the Mask R-CNN deep learning-based method is used to identify active workstations. This information was synthesized using a near real-time data-driven bottleneck identification method suited for assembly lines in modular construction factories. This framework was successfully validated using 420 h of surveillance videos of a production line in a modular construction factory in the U.S., providing 96% accuracy in identifying the occupancy of the workstations and an F-1 Score of 89% in identifying the state of each station on the production line. The extracted active and inactive durations were successfully used via a data-driven bottleneck detection method to detect bottleneck stations inside a modular construction factory. The implementation of this method in factories can lead to continuous and comprehensive monitoring of the production line and prevent delays by timely identification of bottlenecks.

Funder

U.S. Department of Energy Office of Energy Efficiency

Renewable Energy Building Technologies Office

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3