Going High to Keep Body Mass Low: How Post-Exercise Exposure to a Simulated High Altitude Influences Energy Balance—A Proof-of-Concept Pilot Study

Author:

Allen Peyton E.1,Akinwumi Akinola D.1,Kroeze Evan G.1,Leigh Paula Y.1,Ramirez Sahnet N.1,Smart Gregory L.1,Thomas Tay M.1,Paris Hunter L.1

Affiliation:

1. Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA

Abstract

A healthy body mass contributes to a positive quality of life, and for overweight/obese individuals, weight loss of even modest proportions improves health-related outcomes. A novel approach to promoting body mass regulation is to pair exercise with high altitude, thereby upregulating metabolic processes and increasing caloric expenditure. As an added measure of body mass regulation, data suggest that high altitude stimulates the production of the appetite-suppressing hormone leptin. Issues arise, however, given that high altitude compromises aerobic exercise capacity. Whereas exercising at high altitude may compromise exercise intensity and duration, recovering at high altitude retains the integrity of exercise while still potentially conferring the benefits of the low oxygen environment on energy expenditure and energy intake. The purpose of this study was to perform a proof-of-concept pilot test on whether post-exercise exposure to a simulated high altitude influenced acute energy balance. Twelve healthy men and women ran for 30 min at a moderate intensity on two separate occasions. Following exercise, participants recovered for 30 min while breathing either sea level air or low oxygen air simulating high altitude (equivalent to 4500 m elevation). Blood samples and hunger ratings were collected pre-exercise and post-recovery. Heart rate was recorded throughout exercise and recovery and used to calculate caloric expenditure. Post-exercise energy expenditure was significantly higher (p = 0.03) following high altitude recovery (139 ± 15 kcal) compared to sea-level recovery (98 ± 11 kcal). Participants reported a lower desire to eat when they recovered in the high altitude environment (p = 0.01), though post-recovery leptin concentrations were similar between the two conditions. Post-exercise exposure to a simulated high altitude environment represents a promising method for increasing daily caloric expenditure and lowering appetite. Given the pilot nature of this study, future research is needed to address the question of high altitude recovery on a larger sample over a longer time period and with robust measures of caloric expenditure.

Publisher

MDPI AG

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3