Iterative Trajectory Optimization for Physical-Layer Secure Buffer-Aided UAV Mobile Relaying

Author:

Shen Lingfeng,Wang NingORCID,Ji Xiang,Mu Xiaomin,Cai Lin

Abstract

With the fast development of commercial unmanned aerial vehicle (UAV) technology, there are increasing research interests on UAV communications. In this work, the mobility and deployment flexibility of UAVs are exploited to form a buffer-aided relaying system assisting terrestrial communication that is blocked. Optimal UAV trajectory design of the UAV-enabled mobile relaying system with a randomly located eavesdropper is investigated from the physical-layer security perspective to improve the overall secrecy rate. Based on the mobility of the UAV relay, a wireless channel model that changes with the trajectory and is exploited for improved secrecy is established. The secrecy rate is maximized by optimizing the discretized trajectory anchor points based on the information causality and UAV mobility constraints. However, the problem is non-convex and therefore difficult to solve. To make the problem tractable, we alternatively optimize the increments of the trajectory anchor points iteratively in a two-dimensional space and decompose the problem into progressive convex approximate problems through the iterative procedure. Convergence of the proposed iterative trajectory optimization technique is proved analytically by the squeeze principle. Simulation results show that finding the optimal trajectory by iteratively updating the displacements is effective and fast converging. It is also shown by the simulation results that the distribution of the eavesdropper location influences the security performance of the system. Specifically, an eavesdropper further away from the destination is beneficial to the system’s overall secrecy rate. Furthermore, it is observed that eavesdropper being further away from the destination also results in shorter trajectories, which implies it being energy-efficient as well.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3