Stability Analysis and Design of n-DOF Vibration Systems Containing Both Semi-Active and Passive Mechanical Controllers

Author:

Wang Kai1ORCID,Xu Wei1ORCID

Affiliation:

1. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

Abstract

This paper is concerned with the stability analysis and design of the n-DOF (n-degree-of-freedom) mass-chain vibration systems containing both semi-active and passive mechanical controllers. Based on Lyapunov’s stability theory, sufficient conditions are derived for the n-DOF vibration system containing a semi-active switched inerter and a passive mechanical network with the first-order admittance to be globally asymptotically stable. Furthermore, the optimization designs of a quarter-car vibration control system and a three-storey building vibration system are conducted together with the derived stability results, and the instability cases contradicting the stability conditions are presented for illustration. The optimization and simulation results show that the combination of semi-active and passive mechanical controllers in vibration systems can clearly enhance system performances in comparison with the conventional semi-active or passive control. The novelty of this paper is that the stability problem of a general n-DOF vibration system that simultaneously contains a semi-active controller and a first-order passive controller is investigated for the first time, where such a system combines the advantages of both semi-active and passive mechanical controllers. The investigations and results can provide an essential foundation for further exploring the stability problems of more general systems, and can be applied to the controller designs of many vibration systems in practice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3