Abstract
Bearings are some of the most critical industrial parts and are widely used in various types of mechanical equipment. Bearing health status can have a significant impact on the overall equipment performance, and bearing failures often cause serious economic losses and even casualties. Thus, estimating the remaining useful life (RUL) of bearings in real time is of utmost importance. This paper proposes a data-driven RUL prediction method for bearings based on Bayesian theory. First, time-domain features are extracted from the bearing vibration signal and data are fused to build a health indicator (HI) and a state model of bearing degradation. Then, according to Bayesian theory, a Bayesian model of state parameters and bearing life is established. The parameters of the Bayesian model are updated and bearing RUL is predicted by the Metropolis–Hastings algorithm. The method was validated by the XJTU-SY bearing open datasets and the prediction results are compared with the existing methods. Accuracy of the proposed method was demonstrated.
Funder
National Natural Science Foundation of China
Liaoning Revitalization Talents Program
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献