Peukert’s Law-Based State-of-Charge Estimation for Primary Battery Powered Sensor Nodes

Author:

Dai Hongli,Xia YuORCID,Mao Jing,Xu Cheng,Liu WeiORCID,Hu Shunren

Abstract

Accurate state-of-charge (SOC) estimation is essential for maximizing the lifetime of battery-powered wireless sensor networks (WSNs). Lightweight estimation methods are widely used in WSNs due to their low measurement and computation requirements. However, accuracy of existing lightweight methods is not high, and their adaptability to different batteries and working conditions is relatively poor. This paper proposes a lightweight SOC estimation method, which applies Peukert’s Law to estimate the effective capacity of the battery and then calculates the SOC by subtracting the cumulative current consumption from the estimated capacity. In order to evaluate the proposed method comprehensively, different primary batteries and working conditions (constant current, constant resistance, and emulated duty-cycle loads) are employed. Experimental results show that the proposed method is superior to existing methods for different batteries and working conditions, which mainly benefits from the ability of Peukert’s Law to better model the rate-capacity effect of the batteries.

Funder

National Natural Science Foundation of China

China University Industry–University Research Innovation Fund Project

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Chongqing Postgraduate Scientific Research Innovation Project

Fundamental Research Fund of Nanjing University of Aeronautics and Astronautics

Graduate Education High Quality Development Project of Chongqing University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3