Development of Synchronized High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

Author:

Veluthedath Shajihan ShaikORCID,Chow Raymond,Mechitov Kirill,Fu YuguangORCID,Hoang Tu,Spencer Billie

Abstract

The use of digital accelerometers featuring high sensitivity and low noise levels in wireless smart sensors (WSSs) is becoming increasingly common for structural health monitoring (SHM) applications. Improvements in the design of Micro Electro-Mechanical System (MEMS) based digital accelerometers allow for high resolution sensing required for SHM with low power consumption suitable for WSSs. However, new approaches are needed to synchronize data from these sensors. Data synchronization is essential in wireless smart sensor networks (WSSNs) for accurate condition assessment of structures and reduced false-positive indications of damage. Efforts to achieve synchronized data sampling from multiple WSS nodes with digital accelerometers have been lacking, primarily because these sensors feature an internal Analog to Digital Converter (ADC) to which the host platform has no direct access. The result is increased uncertainty in the ADC startup time and thus worse synchronization among sensors. In this study, a high-sensitivity digital accelerometer is integrated with a next-generation WSS platform, the Xnode. An adaptive iterative algorithm is used to characterize these delays without the need for a dedicated evaluation setup and hardware-level access to the ADC. Extensive tests are conducted to evaluate the performance of the accelerometer experimentally. Overall time-synchronization achieved is under 15 µs, demonstrating the efficacy of this approach for synchronization of critical SHM applications.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

1. Collapse of Xinjia Express Hotel https://en.wikipedia.org/wiki/Collapse_of_Xinjia_Express_Hotel

2. Florida International University Pedestrian Bridge Collapse https://en.wikipedia.org/wiki/Florida_International_University_pedestrian_bridge_collapse

3. Real-Time Seismic Monitoring of the New Cape Girardeau Bridge and Preliminary Analyses of Recorded Data: An Overview

4. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

5. Application of MEMS‐based accelerometer wireless sensor systems for monitoring of blast‐induced ground vibration and structural health: a review

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3