Estimating Forest Above-Ground Biomass in Central Amazonia Using Polarimetric Attributes of ALOS/PALSAR Images

Author:

Narvaes Igor da Silva1ORCID,Santos João Roberto dos2,Bispo Polyanna da Conceição3ORCID,Graça Paulo Maurício de Alencastro4ORCID,Guimarães Ulisses Silva5ORCID,Gama Fábio Furlan2ORCID

Affiliation:

1. National Institute for Space Research (INPE), Southern Spatial Coordination (COESU), Campus of the Federal University of Santa Maria, Santa Maria 97105-970, Brazil

2. National Institute for Space Research (INPE), Av. dos Astronautas, 1.758, Sao Jose dos Campos 12227-010, Brazil

3. Department of Geography, School of Environment Education and Development (SEED), The University of Manchester, Oxford Road, Manchester M13 9PL, UK

4. Department of Environmental Dynamics, National Institute for Amazonian Research (INPA), Manaus 69011-970, Brazil

5. Operations and Management Center of the Amazonian Protection System (CENSIPAM), Sps, Area 5, Court 3, Block k, Belém 66617-420, Brazil

Abstract

Polarimetric synthetic aperture radar (SAR) images are essential to understand forest structure and plan forest inventories with the purpose of natural resource management and environmental conservation efforts. We developed a method for estimating above-ground biomass (AGB) from power and phase-radar attributes in L-band images. The model was based on the variables “Pv” (from Freeman–Durden decomposition) and “σ°HH”, complemented by the attributes of Touzi decomposition “αS2”, “τm”, “ ΦS3”, and “ ΦS2”. The analyses demonstrated the contribution of volumetric, multiple, and direct scattering resulting from the interaction between the signal and the random structure of canopies and their forest biomass. The proposed model had good predictive capacity and a positive correlation (R2 = 0.67 and = 0.81, respectively), with Syx = 56.9 Mg ha−1 and a low average estimation error of 7.5% at R2 = 0.81 in the validation. An additional exploratory analysis of the parallel polarimetric responses did not reveal a defined pattern for the different phytophysiognomies—although all indicated a predominance of multiple and/or volumetric scattering. This fact can be related to the floristic and structural variation in the primary forest units, the degree of human intervention in legal logging, and the differences among succession stages.

Funder

National Council for Scientific and Technological Development

INPE’s

Publisher

MDPI AG

Subject

Forestry

Reference82 articles.

1. Food and Agriculture Organization of the United Nations (FAO) (2022, April 28). Global Forest Resources Assessment 2020—Key Findings. Available online: https://www.atibt.org/en/news/11217/fao-global-forest-resources-assessment-2020-fra-2020.

2. (2022, April 28). INPE (National Institute for Space Research), Available online: https://www.gov.br/inpe/pt-br/assuntos/ultimas-noticias/sei_01340-009084_2022_72_notatecnica_estimativa_prodes_2022_revisada_lu_lm_27_10_rev_la-002.pdf.

3. Brazil (2018). Ministério do Meio Ambiente Plano de ação para Prevenção e Controle do Desmatamento e das Queimadas no Cerrado (PCCerrado) e Plano de Ação Para Prevenção e Controle Do Desmatamento Na Amazônia Legal (PCCDAm): Fase 2016–2020, Ministério do Meio Ambiente.

4. Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, G.C., Butz, A., Jung, M., and Kuze, A. (2011). New Global Observations of the Terrestrial Carbon Cycle from GOSAT: Patterns of Plant Fluorescence with Gross Primary Productivity. Geophys. Res. Lett., 38.

5. Avtar, R., Suzuki, R., and Sawada, H. (2014). Natural Forest Biomass Estimation Based on Plantation Information Using PALSAR Data. PLoS ONE, 9.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3