A Fast Method for the Selection of Samples in Populations with Available Genealogical Data

Author:

Hršak DaliborORCID,Katanić IvanORCID,Ristov StrahilORCID

Abstract

Optimal selection of samples in populations should provide the best coverage of sample variations for the available sampling resources. In populations with known genealogical connections, or pedigrees, this amounts to finding the set of samples with the largest sum of mutual distances in a genealogical tree. We present an optimal, and a faster sub-optimal, method for the selection of K samples from a population of N individuals. The optimal method works in time proportional to NK2, and the sub-optimal in time proportional to NK, which is more practical for large populations. The sub-optimal algorithm can process pedigrees of millions of individuals in a matter of minutes. With the real-life pedigrees, the difference in the quality of the output of the two algorithms is negligible. We provide the Python3 source codes for the two methods.

Funder

Croatian Science Foundation

European Regional Development Fund

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference6 articles.

1. Analysis of sampling strategies for collecting genetic material1

2. Basic Sampling Strategies: Theory and Practicehttps://cropgenebank.sgrp.cgiar.org/images/file/procedures/collecting2011/Chapter5-2011.pdf

3. Proportional sampling strategy often captures more genetic diversity when population sizes vary

4. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information

5. Large-scale mitogenome sequencing reveals consecutive expansions of domestic taurine cattle and supports sporadic aurochs introgression;Cubric-Curik;Evol. Appl.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3