Soil Metaproteomics as a Tool for Environmental Monitoring of Minelands

Author:

Trindade Felipe CostaORCID,Gastauer Markus,Ramos Silvio Junio,Caldeira Cecílio FroisORCID,Araújo Josiney Farias de,Oliveira GuilhermeORCID,Valadares Rafael Borges da SilvaORCID

Abstract

Opencast mining drastically alters the landscape due to complete vegetation suppression and removal of topsoil layers. Precise indicators able to address incremental changes in soil quality are necessary to monitor and evaluate mineland rehabilitation projects. For this purpose, metaproteomics may be a useful tool due to its capacity to shed light on both taxonomic and functional overviews of soil biodiversity, allowing the linkage between proteins found in soil and ecosystem functioning. We investigated bacterial proteins and peptide abundance of three different mineland rehabilitation stages and compared it with a non-rehabilitated site and a native area (evergreen dense forest) in the eastern Amazon. The total amount of identified soil proteins was significantly higher in the rehabilitating and native soils than in the non-rehabilitated site. Regarding soil bacterial composition, the intermediate and advanced sites were shown to be most similar to native soil. Cyanobacteria and Firmicutes phyla are abundant in the early stages of environmental rehabilitation, while Proteobacteria population dominates the later stages. Enzyme abundances and function in the three rehabilitation stages were more similar to those found in the native soil, and the higher accumulation of many hydrolases and oxidoreductases reflects the improvement of soil biological activity in the rehabilitating sites when compared to the non-rehabilitated areas. Moreover, critical ecological processes, such as carbon and nitrogen cycling, seem to return to the soil in short periods after the start of rehabilitation activities (i.e., 4 years). Metaproteomics revealed that the biochemical processes that occur belowground can be followed throughout rehabilitation stages, and the enzymes shown here can be used as targets for environmental monitoring of mineland rehabilitation projects.

Funder

VALE S.A.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3