A Novel Pipeline Age Evaluation: Considering Overall Condition Index and Neural Network Based on Measured Data

Author:

Noroznia Hassan1,Gandomkar Majid1,Nikoukar Javad1,Aranizadeh Ali2ORCID,Mirmozaffari Mirpouya3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Islamic Azad University of Saveh, Saveh 14778-93855, Iran

2. Electrical Engineering Department, Iran University of Science & Technology, Tehran 13114-16846, Iran

3. Department of Industrial Engineering, Dalhousie University, 5269 Morris Street, Halifax, NS B3H 4R2, Canada

Abstract

Today, the chemical corrosion of metals is one of the main problems of large productions, especially in the oil and gas industries. Due to massive downtime connected to corrosion failures, pipeline corrosion is a central issue in many oil and gas industries. Therefore, the determination of the corrosion progress of oil and gas pipelines is crucial for monitoring the reliability and alleviation of failures that can positively impact health, safety, and the environment. Gas transmission and distribution pipes and other structures buried (or immersed) in an electrolyte, by the existing conditions and due to the metallurgical structure, are corroded. After some time, this disrupts an active system and process by causing damage. The worst corrosion for metals implanted in the soil is in areas where electrical currents are lost. Therefore, cathodic protection (CP) is the most effective method to prevent the corrosion of structures buried in the soil. Our aim in this paper is first to investigate the effect of stray currents on failure rate using the condition index, and then to estimate the remaining useful life of CP gas pipelines using an artificial neural network (ANN). Predicting future values using previous data based on the time series feature is also possible. Therefore, this paper first uses the general equipment condition monitoring method to detect failures. The time series model of data is then measured and operated by neural networks. Finally, the amount of failure over time is determined.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3