High Speed Maneuvering Platform Squint TOPS SAR Imaging Based on Local Polar Coordinate and Angular Division

Author:

Bie BowenORCID,Quan Yinghui,Xu Kaijie,Sun Guangcai,Xing Mengdao

Abstract

This paper proposes an imaging algorithm for synthetic aperture radar (SAR) mounted on a high-speed maneuvering platform with squint terrain observation by progressive scan mode. To overcome the mismatch between range model and the signal after range walk correction, the range history is calculated in local polar format. The Doppler ambiguity is resolved by nonlinear derotation and zero-padding. The recovered signal is divided into several blocks in Doppler according to the angular division. Keystone transform is used to remove the space-variant range cell migration (RCM) components. Thus, the residual RCM terms can be compensated by a unified phase function. Frequency domain perturbation terms are introduced to correct the space-variant Doppler chirp rate term. The focusing parameters are calculated according to the scene center of each angular block and the signal of each block can be processed in parallel. The image of each block is focused in range-Doppler domain. After the geometric correction, the final focused image can be obtained by directly combined the images of all angular blocks. Simulated SAR data has verified the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. A tutorial on synthetic aperture radar

2. Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface

3. Spotlight Synthetic Radar: Signal Processing Algorithm;Carrara,1995

4. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation;Cumming,2005

5. A Robust Motion Compensation Approach for UAV SAR Imagery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3