Application of Electrochemically Reduced Water for New No-Rinse Shampoo: Design and Optimization Using Response Surface Methodology

Author:

Duangjit SureewanORCID,Sritananuwat Phaijit,Bumrungthai SureewanORCID,Ngawhirunpat Tanasait,Takayama Kozo

Abstract

Coronavirus disease (COVID-19) cases are continuing to rise around the world, with more than 607 million confirmed cases and more than 6.51 million deaths as of September 2022. The World Health Organization (WHO) has emphasized the importance of hygiene in the ongoing COVID-19 pandemic, especially in elderly and bedridden patients. The use of no-rinse shampoo represents a simple change in hair-cleansing products. Daily hospital hair washing for the elderly, bedridden, and ICU patients would be more readily adopted. The objective of this study was to design and optimize a new no-rinse shampoo based on electrochemically reduced water (ERW) using response surface methodology. The relationship between coconut-based surfactant mixtures in a no-rinse shampoo and the resulting physicochemical properties, effectiveness (antibacterial and antifungal activity), and stability of the shampoo was investigated. The vesicle size, size distribution, zeta potential, conductivity, pH, foamability, wetting time, turbidity, and stability of the model formulation were optimized. The optimal formulation with the appropriate physicochemical properties and stability was selected. The effectiveness of the optimal formulation was compared to that of commercially available products. The dry shampoo (DS4) containing 3.5% of the mixed detergent with ERW may prevent infection by Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus, and Candida albicans. The no-rinse shampoo based on ERW successfully demonstrated good stability in addition to efficacy in terms of antibacterial and antifungal activity. The treated hair fiber was not significantly different from that of the intact hair fiber. Under the scanning electron microscopy (SEM) and the atomic force microscopy (AFM), the cuticle layer of the treated hair fiber was not damaged. Thus, no-rinse shampoos may reduce the time of hair rinsing and improve the quality of life of caregivers.

Funder

Thailand Research Funds through the Research Grant for New Scholars

Ubon Ratchathani University Science Park

Ubon Ratchathani University

Faculty of Pharmaceutical Sciences, Ubon Ratchathani University

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3