Characterization of Reactive and Sensitive Skin Microbiota: Effect of Halymenia durvillei (HD) Extract Treatment

Author:

Filaire Edith,Vialleix Carole,Cadoret Jean-Paul,Guénard Sophie,Muller Cedric,Dreux-Zigha Assia,Berthon Jean-Yves

Abstract

After characterization of the reactive skin microbiota, we investigated whether the active Halymenia durvillei (HD), rich in polysaccharides, could modulate this microbiota after 28 days of treatment, act on neuroinflammation parameters, and calm feelings of discomfort and redness. Skin microbiota was assessed using next-generation sequencing experiments (16S RNA gene fragment sequencing) on samples collected from 30 volunteers suffering from reactive, sensitive skin. To evaluate the effect of the HD extract on neuroinflammation, we used an ex vivo model. Finally, an in vivo study was performed using a clinical assessment (blood microcirculation via videocapillaroscopy) of functional signs employing the Sensitive Scale and the soothing effect was evaluated and compared to a placebo treatment. At the phylum level, the samples were mostly composed of Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes, which accounted for more than 97% of the total sequencing read in all samples, with no differences before or after treatment with the HD active ingredient. The Shannon Diversity index indicated lower microbial communities compared to healthy skin. Maintenance of the Shannon Diversity index was reported after 28 days of HD active ingredient treatment, wherein microbial communities continued to decrease in number during treatment with the placebo. The average taxonomic composition of associated skin microbial communities showed that reactive skin is characterized by a low proportion of the Chryseobacterium genus compared to a high proportion of the Corynebacterium genus. At the species level, Actinobacteria are mainly represented by Propionibacterium acnes (72.13%) and Corynebacterium kroppenstedtii (13.23%), representing species typically observed in clinical cases of redness, the main criteria for volunteer inclusion. Corynebacterium kroppenstedtii, with increased levels being associated with skin redness, decreased with HD treatment. This decrease coincided with the clinical improvement observed after 7 weeks of treatment. The ex vivo study revealed that the HD extract induced a significant decrease in the expression of TRPV-1 (−67%; p < 0.001) and NK1-R (−43%; p < 0.01) compared to the control after 6 days of treatment. These data support the use of polysaccharides, found in red alga, in the treatment of reactive and sensitive skin related to the modulation of skin microbiota.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Ageing,Chemical Engineering (miscellaneous),Surgery

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3