Degradation of Hair Surface: Importance of 18-MEA and Epicuticle

Author:

Tokunaga Shinichi,Tanamachi Hiroto,Ishikawa Kazutaka

Abstract

In this paper, surface degradation of hair is reviewed. Surface properties such as hydrophobicity and surface friction change as surface structures of hair fiber, that is, 18-methyleicosanoic acid (18-MEA) and epicuticle, degrade. Comparison of contact angle and amount of 18-MEA from root to tip of the sampled hair fibers clarified the contribution of not only 18-MEA but also epicuticle to surface properties. It was found that chemical treatment by itself, such as bleaching, is not enough to cause complete loss of hydrophobic nature even after 18-MEA is removed. Additional weathering processes, such as repeatedly shampooing, are required. A technology for the deposition of a persistent hydrophobicity to bleached and weathered hair surfaces using 18-MEA is presented. Combination of 18-MEA with specific cationic surfactants (Stearoxypropyldimethylamine: SPDA) made the bleached and weathered hair surface hydrophobic, and its hydrophobicity was maintained even after shampooing. Characterization of adsorbed layers of 18-MEA/SPDA on a mica surface, as a possible hydrophilic surface model, was performed using atomic force microscopy (AFM) and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). The effects of the anteiso-branch moiety of 18-MEA to create a persistent hydrophobicity with 18-MEA/SPDA were investigated using controlled AFM. It was revealed that the anteiso-branch moiety of 18-MEA in the 18-MEA/SPDA system produces a persistent hydrophobicity by providing higher fluidity to the upper region of the 18-MEA/SPDA layer. The contribution to hair beauty and sensory feeling as one of the practical functions of the hair surface is described in this paper. The hydrophobic nature of the hair surface reduces surface friction in a wet state, which reduces hair disorder alignment. It is also revealed that the moisturized or dried out feeling strongly depends on the hair shape (meandering and diameter) which depends on hair surface properties in a wet environment.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Ageing,Chemical Engineering (miscellaneous),Surgery

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3