Initial Study on Physiochemical Property and Antibacterial Activity against Skin-Infecting Bacteria of Silver Nanoparticles Biologically Produced Using Crude Melanin from Xylaria sp.

Author:

Doan Linh12ORCID,Vo Nhu K. H.3,Tran Hanh T. M.3

Affiliation:

1. School of Chemical and Environmental Engineering, International University—Vietnam National University, Block 6, Linh Trung Ward, Thu Duc, Ho Chi Minh City 70000, Vietnam

2. Nanomaterials Engineering Research & Development (NERD) Lab, International University—Vietnam National University, Block 6, Linh Trung Ward, Thu Duc, Ho Chi Minh City 70000, Vietnam

3. Applied Microbiology Laboratory, School of Biotechnology, International University—Vietnam National University, Block 6, Linh Trung Ward, Thu Duc, Ho Chi Minh City 70000, Vietnam

Abstract

Silver nanoparticles (AgNPs) produced by biological methods are safer for biomedical applications. Melanins were initially reported to facilitate AgNPs synthesis. Our research found that the stromata of some Xylaria species contained significant amounts of melanins, which had strong antioxidant and anti-ultraviolet activities without toxicity toward human skin cells. This study reported the characteristics and antibacterial activities against skin-infecting bacteria (Staphylococcus aureus and Cutibacterium acnes) of AgNPs synthesized using crude melanin extracted from stromata of Xylaria sp. AgNPs were successfully synthesized by mixing the crude melanin solution with 0.1 M AgNO3 (25:1, v/v) and incubating for 3 h at 100 °C. The SEM found that the average size of the synthesized AgNPs was 18.85 ± 3.75 nm. The melanin-mediated AgNPs displayed significantly higher antibacterial activities against the tested acne-causing bacteria compared to the positive control (Erythromycin). Specifically, the melanin-mediated AgNPs inhibited 90% of S. aureus and C. acnes at 62.5 (µg/mL) and 15.625 (µg/mL), respectively, whereas it required erythromycin up to 4000 (µg/mL) to achieve the same activities. This research illustrated the feasibility of using crude melanin of Xylaria sp. for the direct synthesis of AgNPs and the potential use of the synthesized AgNPs for treating acne-causing bacteria (with further investigation needed).

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3