Enhancement of Skin Permeation and Penetration of β-Arbutin Fabricated in Chitosan Nanoparticles as the Delivery System

Author:

Sahudin Shariza,Sahrum Ayumi Nursyafiqah,Kaharudin Norsavina

Abstract

Background: There has been an increase in demand for cosmetic skin-whitening products with efficacy toward lightening skin tone. β-arbutin is an inhibitor of tyrosinase enzyme activity within the skin’s melanocytes, and so has shown considerable promise as a skin-lightening agent. It is, however, both hydrophilic and hygroscopic, which hinders its penetration of the skin to reach these melanocytes. Chitosan (CS) possesses considerable penetration-enhancing properties when utilized in topical delivery formulations. The strong affinity of positively charged chitosan nanoparticles toward negatively charged biological membranes can be exploited to achieve site-specific targeting. Objective: To investigate the use of chitosan nanoparticles (CSNPs) as carrier units to enhance the topical delivery of β-arbutin. Method: CSNPs containing β-arbutin were prepared using an ionic cross-linking method, and entrapment efficiency and loading capacity were evaluated at numerous β-arbutin concentrations. Further characterization involved using FTIR, XRD, TEM, and TGA, and in vitro permeation studies were conducted using in vitro Franz diffusion cells. Results: β-arbutin chitosan nanoparticles were successfully formulated with a size range of 211–289 d.nm, a polydispersity index between 0.2–0.3, and zeta potential in the range 46.9–64.0 mV. The optimum encapsulation efficiency (EE) and loading capacity (LC) of β-arbutin were 68% and 73%, respectively. TEM revealed the nanoparticles to be spherical in shape. FTIR spectra revealed characteristic chitosan-related peaks appearing at 3438.3 cm−1 (-OH stretching) and 3320 cm−1 (-CH stretching), together with 1598.01 cm−1 (-NH2) specific to β-arbutin nanoparticles. XRD analysis revealed an increase in crystallinity and TGA analyses identified increasing thermal stability with increasing β-arbutin concentration. In vitro studies indicated higher permeation and improved penetration of β-arbutin loaded in CSNPs compared to its free form. Conclusion: CSNPs present considerable promise as effective carriers for improved topical delivery of β-arbutin.

Funder

RMC UiTM/UCS UiTM

VNI Scientific

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3