Anti-Pollution Activity, Antioxidant and Anti-Inflammatory Effects of Fermented Extract from Smilax china Leaf in Macrophages and Keratinocytes

Author:

Kim Yoo-KyungORCID,Kang Dae-Jung

Abstract

Air pollution has considerable effects on the human skin, showing that every single pollutant has a different toxicological impact on it. The oxidative stress that exceeds the skin’s antioxidant capacity can lead to oxidative damage and premature skin aging by repeated air pollutant contact. In this study, according to the generalized protocol available to objectively substantiate the ‘anti-pollution’ claim, we evaluated several biomarkers after pollutants exposure in Raw 264.7 macro-phages and HaCaT keratinocytes to investigate the possibility of anti-pollution cosmetic material of fermented extract from Smilax china leaves (FESCL). FESCL decreased pollutants-induced luciferase activity in a dose-dependent manner, and FESCL significantly inhibited XRE-luciferase activity at a concentration of 1%. The IC50 value of FESCL showed the same DPPH scavenging activity at 0.0625% as ascorbic acid, and the maximum DPPH scavenging activity (92.44%) at 1%. The maximum permissible non-cytotoxic concentrations of FESCL for a Raw 264.7 cell was determined to be 2%, where PGE2 production of FESCL was inhibited by 78.20%. These results show the anti-pollution activity of FESCL against the pollutant-stimulated human living skin explants. In conclusion, we confirmed the anti-pollution potential of FESCL as one of the functional materials in cosmetic formulation.

Funder

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

Reference34 articles.

1. Juliano, C., and Magrini, G.A. (2018). Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products. Cosmetics, 5.

2. Free Radicals and Extrinsic Skin Aging;Dermatol. Res. Pr.,2012

3. The impact of airborne pollution on skin;J. Eur. Acad. Dermatol. Venereol.,2019

4. The impact of airborne pollution and exposure to solar ultraviolet radiation on skin: Mechanistic and physiological insight;Environ. Sci. Pollut. Res.,2020

5. Impact of airborne particulate matter on skin: A systematic review from epidemiology to in vitro studies;Part. Fibre Toxicol.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3