Stiffness of Human Hair Correlates with the Fractions of Cortical Cell Types

Author:

Ezawa Yusuke,Nagase Shinobu,Mamada Akira,Inoue Shigeto,Koike Kenzo,Itou TakashiORCID

Abstract

(1) Background: The objective of this work was to elucidate the hair microstructure which correlates with the stiffness of human hair fibers. (2) Methods: Bending moduli of hair fibers were evaluated for the hair samples from 156 Japanese female subjects. Hair transverse sections were dual-stained with fluorescent dyes which can stain para- and ortho-like cortical cells separately, and observed under a fluorescence light microscope. Atomic force microscopy nanoindentation measurements were performed to examine the modulus inside macrofibrils. (3) Results: The difference in bending moduli between the maximum and the minimum values was more than double. The hair of high bending modulus was rich in para-like cortical cells and the bending modulus significantly correlated with the fraction of para-like cortical cells to the whole cortex. On the other hand, the elastic moduli inside macrofibrils were almost same for the para- and ortho-like cortical cells. (4) Conclusions: Hair bending modulus depends on the fractions of the constitutional cortical cell types. The contribution of the intermacrofibrillar materials, which differed in their morphologies and amounts of para- and ortho-like cortical cells, is plausible as a cause of the difference in the modulus of the cortical cell types.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

Reference30 articles.

1. Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism

2. Chemical and Physical Behavior of Human Hair;Robbins,2012

3. The role of keratin proteins and their genes in the growth, structure and properties of hair;Powell,1997

4. Human Hair Keratin‐Associated Proteins (KAPs)

5. The Heterogeneity of the Keratin Fibers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3