Protein Carbonylation as a Reliable Read-Out of Urban Pollution Damage/Protection of Hair Fibers

Author:

Cavagnino Andrea,Starck Arthur,Bobier Anaïs,Baraibar Martin A.

Abstract

(1) Background: Environmental factors, such as airborne pollutants and solar UV, induce oxidative damage to proteins and lipids on hair fibers, leading to decreased hair strength and shine, increased fiber porosity, brittleness, dryness, and stiffness. Traditional methods used for hair damage/protection/reparation assessment show limitations in sensitivity or specificity for evidencing the benefits to be gained from the protection/reparation of hair fibers against environmental stressors. (2) Methods: Ex vivo experimental models of hair fibers exposed to urban pollutants and UV irradiation were developed. Targeted proteomics approaches for the quantification of oxidatively damaged (carbonylated) proteins on hair fibers were optimized. (3) Results: A significant dose-dependent increase in carbonylation both in the cuticle and cortex proteins was observed upon exposure of hair fibers to particulate matter and UV-A radiation, at daily stress equivalent doses. Increased protein carbonylation on keratins and keratin-associated proteins led to loss of hair fiber structural integrity. The oxidative modification of proteins induced by urban pollution exposure led to hair cuticle structural damage revealed by an increased permeability. However, protein carbonylation was prevented in the presence of antioxidant compounds. (4) Conclusions: Protein carbonylation is an early event in hair fiber damage which can be used as a reliable biomarker for the efficacy of hair care interventions against environmental stressors.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

Reference33 articles.

1. Hair Cosmetics

2. Textbook of Morphology and properties of hair;Feughelman,1997

3. Human hair: A unique physicochemical composite

4. The impact of oxidative stress on hair

5. Weathering of hair;Tolgyesi;Cosmet. Toilet.,1983

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3