Age-Defying and Photoprotective Potential of Geranium/Calendula Essential Oil Encapsulated Vesicular Cream on Biochemical Parameters against UVB Radiation Induced Skin Aging in Rat

Author:

Lohani AlkaORCID,Morganti Pierfrancesco

Abstract

UVB irradiation promotes the production of reactive oxygen species, which can lead to an increase in oxidative stress in the cell and the generation of toxic components, resulting in photoaging. Essential oils (EOs) are well-known in the cosmetics sector for their beneficial effects, as they have a wide range of biological activities. Considering this fact, the current study investigates the photoprotective potential of geranium essential oil (GEO)/calendula essential oil (CEO) encapsulated vesicular cream on the biochemical parameters of the skin of albino rats exposed to UVB radiation. After 30 days of treatment with cream formulations and UVB irradiation, the skin tissue was assayed for several biochemical parameters and histopathology analysis. The results of biochemical study revealed that, in comparison to non-vesicular creams, vesicular cream formulations were able to protect the endogenous skin natural antioxidant system by maintaining superoxide dismutase, catalase, total protein, ascorbic acid, and hydroxyproline levels and by decreasing malondialdehyde levels in the skin after UVB exposure. Changes in various cellular structures along with the change in the epidermis and dermis of the skin after UVB exposure in the treated group were observed by a histopathology of skin tissue and compared to the non-treated group, which revealed the skin damaging effect of UVB radiation and the protective effect of vesicular creams. The results suggest that the GEO/CEO-encapsulated vesicular creams have the potential to protect the skin against harmful UVB radiation by maintaining the natural antioxidant defence mechanism of the skin. In conclusion, this research presents novel herbal cosmetic formulations with improved antioxidant capacity and photoprotective potential that may help to slow down the skin aging process.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3