Surface Activity of Surfactant–Polyelectrolyte Mixtures through Nanoplasmonic Sensing Technology

Author:

Perea Cubides Tatiana Andrea,Amin SamiulORCID

Abstract

Deposition plays an important role in the active delivery and efficiency of hair and skin formulations since it allows active compounds to interact with surfaces in order to achieve the product’s desired performance characteristics. Therefore, it is essential to study the surface activity and behavior of certain compounds that are frequently used in cosmetic and pharmaceutical formulations in order to understand how they interact with relevant biological surfaces, such as hair and skin. We chose to study the surfactants and conditioning agents utilized in the formulation of conditioning shampoos, which are usually designed to be able to achieve the deposition of these substances on the hair and scalp to provide lubrication and better conditioning for hair fibers, facilitating detangling and providing a better feel. In this study, cationic polymer and salt fractions were varied to obtain eighteen different conditioning shampoo formulations in which the deposition was measured by utilizing a nanoplasmonic sensing technology instrument. Moreover, a wet combing test was performed for each of the formulations to investigate if there was any correlation between the combing force and the surface deposition. The complete study was performed using a sustainable anionic surfactant in order to compare the results with those obtained from the traditional formulations.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

Reference37 articles.

1. Chemical and Physical Behavior of Human Hair;Robbins,2013

2. Hair: Its structure and response to cosmetic preparations

3. Physicochemical Aspects of the Performance of Hair-Conditioning Formulations

4. Hair cosmetics: An overview

5. Hair Care. An Illustrated Dermatologic Handbook;Draelos,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3