Antifungal Effect of Liposomal α-Bisabolol and When Associated with Fluconazole

Author:

Bezerra Camila F.,Júnior José Geraldo de A.,Honorato Rosilaine de L.,Santos Antonia Thassya L. dos,Silva Josefa Carolaine P. da,Silva Taís G. da,Freitas Thiago S. deORCID,Vieira Thiago Adler T.,Bezerra Maria Clara F.,Lima Sales Débora,Rodrigues João Pedro V.,Filho José M. BarbosaORCID,Peixoto Laisla R.ORCID,Pinheiro Allyson P.,Coutinho Henrique D. M.ORCID,Morais-Braga Maria Flaviana B.ORCID,Silva Teresinha G. da

Abstract

Fungal pathologies caused by the genus Candida have increased in recent years due to the involvement of immunosuppressed people and the advance of resistance mechanisms acquired by these microorganisms. Liposomes are nanovesicles with lipid bilayers in which they store compounds. α-Bisabolol is a sesquiterpene with proven biological activities, and in this work it was tested alone in liposomes and in association with Fluconazole in vitro to evaluate the antifungal potential, Fluconazole optimization, and virulence inhibitory effect in vitro. Antifungal assays were performed against standard strains of Candida albicans, Candida tropicalis, and Candida krusei by microdilution to identify the IC50 values and to obtain the cell viability. The Minimum Fungicidal Concentration (MFC) was performed by subculturing on the solid medium, and at their subinhibitory concentration (Matrix Concentration (MC): 16,384 µg/mL) (MC/16), the compounds, both isolated and liposomal, were associated with fluconazole in order to verify the inhibitory effect of this junction. Tests to ascertain changes in morphology were performed in microculture chambers according to MC concentrations. Liposomes were characterized from the vesicle size, polydispersity index, average Zeta potential, and scanning electron microscopy. The IC50 value of the liposomal bisabolol associated with fluconazole (FCZ) was 2.5 µg/mL against all strains tested, revealing a potentiating effect. Liposomal bisabolol was able to potentiate the effect of fluconazole against the CA and CT strains by reducing its concentration and completely inhibiting fungal growth. α-Bisabolol in liposomal form inhibited the morphological transition in all strains tested at a concentration of MC/8. The liposomes were homogeneous, with vesicles with diameters of 203.8 nm for the liposomal bisabolol and a surface charge potential of −34.2 mV, conferring stability to the nanosystem. Through scanning microscopy, the spherical shapes of the vesicles were observed.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3