Effect of Thermal Growth Oxide Composition and Morphology on Local Stresses in Thermal Barrier Coatings

Author:

Ding Kunying,Zhang TaoORCID,Wang Zhe,Yu Jun,Guo Wansen,Yang Yifei

Abstract

The failure of thermal barrier coatings (TBCs) during operation depends mainly on the thermal mismatch between the ceramic top coat (TC) and the metal bond coat (BC). The thermal mismatch at the interface is influenced by the dynamic changes in the composition and morphology of the thermally grown oxide (TGO) between TC and BC during thermal cycling. This work focuses on the establishment of a TGO dynamic growth model, which considers the changes in TGO composition and morphology for investigating the effect of dynamic growth of TGO on local mismatch stresses during thermal cycling. The results show that the sharp locations at the TGO/BC interface are more prone to high tensile stresses during thermal cycling due to the uneven growth behavior of TGO, leading to crack initiation. The valley region of the interface is in a state of compressive stress σxx during the early stages of thermal exposure. The peak region preferentially forms a concentration of tensile stress σyy. Once large-scale “layer” (Ni, Co)Al2O4-based spinel-like mixed oxides(MO) growth occurs in TGO, the stress σxx changes from compressive stress to tensile stress in the valley region, eventually forming high tensile stress (Max: +158 MPa). The maximum tensile stress σyy in the peak region is increased to 256 MPa, which is more than two times larger than the early period of thermal exposure. As a result, the dramatic changes in local stresses seriously affect the time and location of microcracks.

Funder

Zhe wang

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3