Using Iron Tailings for Phosphate Removal in Cemented Phosphogypsum (PG) Backfill

Author:

Shi Ying,Wang Xiaolin,Qing Zixuan,Song Yanmei,Min Jie,Zhou Yanan,Du Jing,Wang Shaofeng

Abstract

Compared with the post-treatment of pollutants, such as the removal of phosphate from wastewater, it is more important to develop effective emission control strategies to reduce phosphate pollution. Phosphogypsum (PG) is a typical solid waste byproduct of phosphate production and contains high amounts of residual phosphate. In order to control the phosphate emissions during the recycling of PG aggregates for cemented backfill, another solid waste product—iron tailings (ITs)—was added during the preparation of backfill slurry. The results showed that the ITs effectively accelerated the phosphate removal in cemented PG backfill, enabling the quick reduction in the phosphate concentration to the discharge standard (<0.5 mg/L) within 15 min. This means that the emissions of phosphate to bleeding water were effectively controlled. The adsorption experiment showed that phosphate was adsorbed by the ITs, and the adsorption data fitted well with the Langmuir adsorption model (R2 = 0.98) and pseudo-second-order kinetic model (R2 = 0.99), indicating that the phosphate adsorption of ITs was a monolayer chemical adsorption. Furthermore, an unconfined compressive strength (UCS) test was performed on the backfill with the addition of ITs. Compared to the control group (without ITs), the UCS of backfill with 20% ITs increased from 1.08 MPa to 1.33 MPa, indicating that the addition of solid waste could be beneficial to the strength development of the backfill by mitigating the interference of phosphate with the hydration process. The backfill cured for 28 d was selected for the toxic leaching test, and the phosphate concentration in the leachates was always below 0.02 mg/L, indicating that ITs can effectively immobilize phosphate in backfill for a long time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3