Strength of Products Made of Ultrafine-Grained Titanium for Bone Osteosynthesis

Author:

Klevtsov Gennadiy V.,Valiev Ruslan Z.ORCID,Rezyapova Luiza R.,Klevtsova Natal’ya A.,Tyurkov Maksim N.ORCID,Linderov Mikhail L.ORCID,Fesenyuk Maksim V.,Frolova Olesya A.

Abstract

This paper evaluates the fatigue strength of ultrafine-grained (UFG) Grade 4 Ti in the low-cycle fatigue region, as well as the strength of medical implants (plates and screws) made of UFG Ti under various types of loading in comparison with the strength of products made of coarse-grained (CG) Ti. To produce a UFG state, titanium billets after annealing were processed by the ECAP-Conform technique. The fatigue of the prismatic specimens with a thickness of 10 mm from CG and UFG Ti was tested by the three-point bending method using an Instron 8802 facility. The modeling and evaluation of the stress-strain state in the ANSYS software package for finite-element analysis revealed, in particular, the localization of equivalent stresses in the area of hole edges and at fillets during the tension of the plates. The performed research has demonstrated that medical implants (plates and screws) from UFG Grade 4 Ti have a higher strength under different types of loading (tension, fatigue strength, torsion) in comparison with products from CG Ti. This opens up a possibility for the miniaturization of medical products from UFG Ti while preserving their main performance properties at an acceptable level.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3