Study on Mix Proportion Optimization and Microstructure of Coal-Based Solid Waste (CSW) Backfill Material Based on Multi-Objective Decision-Making Model

Author:

Zhao XinyuanORCID,Yang Ke,He Xiang,Wei Zhen,Yu Xiang,Zhang Jiqiang

Abstract

The preparation of underground-backfill material from CSW can be used for large-scale disposal of solid waste. The proportion of backfill material plays an important role in transportation and backfilling effect, and the mix-proportion optimization of backfill material is essentially a multi-factor and multi-objective optimization problem. In this paper, to obtain the mix proportion of backfill materials with optimal comprehensive-evaluation indexes, and suitable for the engineering application, the fluidity and strength of backfill material, mainly composed of coal gangue(CG), fly ash (FA), flue gas desulfurization gypsum (FGD gypsum), and gasification coarse slag (GCS), were tested by single-factor transformation method, and the effects of various solid wastes on the slump-flow, bleeding rate and early strength of backfill material were analyzed. The optimal mix proportion of CSW with the slump-flow, bleeding rate, and 3-day and 7-day strengths as the evaluation indicators is FA: GCS: FGD gypsum: CG = 25%:25%:25%:25%, according to the multi-objective decision model. Furthermore, the comprehensive evaluation index that meets the requirements of mine backfilling is obtained by changing the ordinary portland cement (OPC) content, that is, the optimal OPC content is 10% of the total solid waste, and the mass concentration is 78%. Finally, the pore structure, micromorphology, and composition of the backfill material with the optimal mix proportion were studied by Mercury Intrusion Porosimetry (MIP), X-ray Diffraction (XRD), and Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS). The research results provide a good reference for the field application of CSW for underground backfilling.

Funder

National Program on Key Basic Research Project of China

Research Project of Institute of Energy, Hefei Comprehensive National Science Center

Anhui Province University Graduate Research Project

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China;Peng;J. China Coal Soc.,2020

2. Discussion on the utilization of industrial solid waste resources in Ningdong Energy And Chemical Base;Niu;China-Arab States Sci. Technol. Forum,2020

3. Development overview of paste backfill technology in China’s coal mines: A review;Yang;Environ. Sci. Pollut. Res.,2021

4. Prospects of resource utilization and disposal of coal-based solid wastes in Xinjiang;Huang;Coal Sci. Technol.,2021

5. Theory and technology of green filling mining of solid waste underground in coal power base of yellow river basin;Yang;J. China Coal Soc.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3