Laser Processed Hybrid Lead-Free Thin Films for SAW Sensors

Author:

Enea Nicoleta,Ion ValentinORCID,Viespe CristianORCID,Constantinoiu IzabelaORCID,Buiu OctavianORCID,Romanitan Cosmin,Scarisoreanu Nicu Doinel

Abstract

In this study we report the specific interaction of various gases on the modified surface of acoustic wave devices for gas sensor applications, using the piezoelectric ceramic material BaSrTiO3 (BST), with different concentrations of Sr. For enhancing the sensitivity of the sensor, the conductive polymer polyethylenimine (PEI) was deposited on top of BST thin films. Thin films of BST were deposited by pulsed laser deposition (PLD) technique and integrated into a test heterostructure with PEI thin films deposited by matrix assisted pulsed laser evaporation (MAPLE) and interdigital Au electrodes (IDT). Further on, the layered heterostructures were incorporated into surface acoustic wave (SAW) devices, in order to measure the frequency response to various gases (N2, CO2 and O2). The frequency responses of the sensors based on thin films of the piezoelectric material deposited at different pressures were compared with layered structures of PEI/BST, in order to observe differences in the frequency shifts between sensors. The SAW tests performed at room temperature revealed different results based on deposition condition (pressure of oxygen and the percent of strontium in BatiO3 structure). Frequency shift responses were obtained for all the tested sensors in the case of a concentration of Sr x = 0.75, for all the analysed gases. The best frequency shifts among all sensors studied was obtained in the case of BST50 polymer sensor for CO2 detection.

Funder

Romanian Ministry of Education and Research

Romanian National Nucleus Program LAPLAS VI

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3