The Effect of Magnetic Composites (γ-Al2O3/TiO2/γ-Fe2O3) as Ozone Catalysts in Wastewater Treatment

Author:

Wang ChengORCID,Zhou Guangzhen,Xu Yanhua,Yu Peng

Abstract

Using municipal sewage as a source of reclaimed water is an important way to alleviate the shortage of water resources. At present, advanced oxidation technology (AOPs), represented by ozone oxidation, is widely used in wastewater treatment. In this study, γ-Al2O3, a low-cost traditional ozone catalyst, was selected as the matrix. By modifying magnetic γ-Fe2O3 with a titanate coupling agent, in situ deposition, and calcination, the final formation of a γ-Al2O3/TiO2/γ-Fe2O3 micrometer ozone catalyst was achieved. A variety of material characterization methods were used to demonstrate that the required material was successfully prepared. The catalyst powder particles have strong magnetic properties, form aggregates easily, and have good precipitation and separation properties. Subsequently, ibuprofen was used as the degradation substrate to investigate the ozone catalytic performance of the prepared catalyst, and this proved that it had good ozone catalytic activity. The degradation process was also analyzed. The results showed that in the ozone system, some of the ibuprofen molecules will be oxidized to form 1,4-propanal phenylacetic acid, which is then further oxidized to form 1,4-acetaldehyde benzoic acid and p-phenylacetaldehyde. Finally, the prepared catalyst was applied to the actual wastewater treatment process, and it also had good catalytic performance in this context. GC–MS detection of the water samples after treatment showed that the types of organic matter in the water were significantly reduced, among which nine pollutants with high content, such as bisphenol A and sulfamethoxazole, were not detected after treatment.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province in China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3