The Efficient and Sensitive Detection of Serum Dopamine Based on a MOF-199/Ag@Au Composite SERS Sensing Structure

Author:

Peng Yuyu1,Wang Chunyan1,Li Gen1ORCID,Cui Jianguo1,Jiang Yina1,Li Xiwang1,Wang Zhengjie1,Zhou Xiaofeng1

Affiliation:

1. College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China

Abstract

In this study, a MOF-199/Ag@Au SERS sensing structure was successfully synthesized by combining metal–organic frameworks (MOFs) with surface-enhanced Raman scattering (SERS) technology for the efficient detection of dopamine (DA), a biomarker for neurological diseases, in serum. Using electrochemical methods, a copper-based MOF (MOF-199) was synthesized in situ on copper substrates and further deposited with silver nanoparticles (AgNPs). Subsequently, gold nanoshells were encapsulated around these silver cores by in situ chemical deposition. This preparation process is simple, controllable, and inexpensive. Furthermore, a novel Azo reaction-based DA SERS method was proposed to detect 1 pM DA, which represents an improvement in sensitivity by two orders of magnitude compared to previous unlabeled SERS detection methods and by four orders of magnitude compared to another SERS approach proposed in this work. There was an excellent linear relationship (R2 = 0.976) between the SERS signal at 1140 cm−1 and the DA concentration (0.001 M~1 pM). The results indicate that the MOF-199/Ag@Au sensor structure can successfully achieve both the qualitative and quantitative detection of DA in serum, thus providing a robust technical basis for the application of SERS technology in the field of clinical neurological disease screening.

Funder

Chongqing University of Technology Research and Innovation Team Cultivation Program

Horizontal Project of Chongqing University of Technology

Natural Science Foundation of Chongqing

Special funding project of Army Medical University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3