Architectures and Mechanisms of Perylene Diimide-Based Optical Chemosensors for pH Probing

Author:

Chen Shuai12ORCID,Zhou Meng1,Zhu Ling1,Yang Xiaomei3,Zang Ling34ORCID

Affiliation:

1. Jiangxi Key Laboratory of Flexible Electronics and School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China

2. Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Nanchang 330013, China

3. Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA

4. Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA

Abstract

The precise control and monitoring of pH values remain critical for many chemical, physiological and biological processes. Perylene diimide (PDI)-based molecules and materials exhibit excellent thermal, chemical and photochemical stability, unique UV-vis absorption and fluorescent emission properties, low cytotoxicity, as well as intrinsic electron-withdrawing (n-type semiconductor) nature and impressive molecular assembly capability. These features combined enable promising applications of PDIs in chemosensors via optical signal modulations (e.g., fluorescent or colorimetric). One of the typical applications lies in the probing of pH under various conditions, which in turn helps monitor the extracellular (environmental) and intracellular pH change and pH-relying molecular recognition of inorganic or organic ions, as well as biological species, and so on. In this review, we give a special overview of the recent progress in PDI-based optical chemosensors for pH probing in various aqueous and binary water–organic media. Specific emphasis will be given to the key design roles of sensing materials regarding the architectures and the corresponding sensing mechanisms for a sensitive and selective pH response. The molecular design of PDIs and structural optimization of their assemblies in order to be suitable for sensing various pH ranges as applied in diverse scenarios will be discussed in detail. Moreover, the future perspective will be discussed, focusing on the current key challenges of PDI-based chemosensors in pH monitoring and the potential approach of new research, which may help address the challenges.

Funder

Academic Development Project of TongXin Funds

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3