Rhodamine Derivative-Linked Silica-Coated Upconverting Nanophosphor (NaYF4: Yb3+/Er3+@SiO2-RBDA) for Ratiometric, Ultrasensitive Chemosensing of Pb2+ Ions

Author:

Kumar Jitender1,Roy Indrajit1

Affiliation:

1. Department of Chemistry, University of Delhi, Delhi 110007, India

Abstract

Lead (Pb2+) ions are considered as one of the primary environmental pollutants and have a profound effect on human health. In this work, we have developed a hybrid organic–inorganic optical nanochemosensor for selective and ultrasensitive detection of Pb2+ ions based on energy transfer (ET), involving a Pb2+ sensitive rhodamine-derived named (E)-4-(((3′,6′-bis(diethylamino)-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)methyl)benzaldehyde represented as RBDA, covalently linked with silica coated upconverting nanophosphors (UCNPs). The UCNPs emit visible light after being excited by NIR light, activating the Pb2+ coordinated RBDA (fluorescent probe). When Pb2+ ions were added, a yellow emission band at about 588 nm formed in upconverting photoluminescence spectra, whereas the strength of green emission at about 542 nm reduced upon excitation of 980 nm laser, indicating the energy transfer from UCNP to RBDA-Pb2+ complex. The concentration of Pb2+ ions directly affects how well the probe reabsorbs the green emission of the nanophosphor, thus enabling the ratiometric chemosensing. With a detection limit of 20 nM in aqueous, the resulting ET-based nochemosensor can also preferentially detect Pb2+ despite the presence of other ions. Owing to the minimal autofluorescence and the great penetration depth of NIR light and special optical features of UCNPs, this is a promising approach for sensitive and in-depth detection of Pb2+ ions in a complex ecological and biological specimen.

Funder

Institution of Eminence (IoE), University of Delhi, India

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemosensors for Ion Detection;Chemosensors;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3