Preparation of Reduced Graphene Oxide Sheets with Large Surface Area and Porous Structure for High-Sensitivity Humidity Sensor

Author:

Kim Seo Jin1,Park Hong Jun1ORCID,Yoon Eun Seop1,Choi Bong Gill1ORCID

Affiliation:

1. Department of Energy Resources and Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea

Abstract

Humidity sensors provide environmental conditions suitable for several applications. However, they suffer from a limited reliable range originating from the low electrical conductivity and low water-sensitive sites of humidity-sensing materials. In this study, we developed high-sensitivity humidity sensors based on holey-reduced graphene oxide (HRGO) with a large surface area (274.5 m2/g) and an abundant pore structure. HRGO was prepared via the H2O2-etching-reaction-assisted hydrothermal processing of graphene oxide sheets. The resulting humidity sensor exhibited high sensitivity (−0.04317 log Z/%RH, R2 = 0.9717), a fast response time (<3 s), and long-term stability over 28 days. The impedance responses of the humidity sensor were almost similar between the mechanically standard and bent states. Furthermore, electrochemical impedance spectroscopy was performed to understand the humidity-sensing mechanism of the HRGO materials.

Funder

Ministry of Science and ICT

Nanomedical Devices Development Project of NNFC in 2023

Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3