Liquid-Phase Exfoliated Graphene and Polytetrafluoroethylene for Highly Durable and Reusable Chemical Leak Detection Sensors

Author:

Rubab Najaf1,Sohn Eunbee2,Kang Won-Seok2,Kim TaeYoung1

Affiliation:

1. Department of Materials Science and Engineering, Gachon University, Seongnam 13120, Republic of Korea

2. FLOWTECH Co., Ltd., Seongnam 13201, Republic of Korea

Abstract

Graphene-based chemical sensors hold promise across diverse applications owing to their exceptional sensitivity and selectivity. However, achieving their long-term durability and reusability while preserving high sensitivity remains a significant challenge, particularly in harsh environments where exposure to strong chemicals is inevitable. This paper presents a novel approach to address this challenge by synergistically integrating liquid-phase exfoliated graphene (LPEG) with polytetrafluoroethylene (PTFE) within a single sensing strip. Through a comprehensive experimental investigation, we demonstrate the fabrication of highly durable and reusable chemical leak detection sensors by combining LPEG and PTFE. Furthermore, we explore the sensing mechanism, highlighting the roles of LPEG and PTFE in enhancing sensitivity and selectivity, along with durability and reusability. Performance evaluation reveals the sensors’ robustness against mechanical and chemical degradation, coupled with excellent recyclability. This innovative approach holds promise for applications in environmental monitoring, industrial safety, and healthcare, thus advancing the field of graphene-based chemical leak detection sensors.

Funder

Korean government

Ministry of Science and ICT(MSIT, Korea) & the Ministry of Trade, Industry and Energy

Gachon University research fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3