Measurement of Pulsating Flow Using a Self-Attachable Flexible Strain Sensor Based on Adhesive PDMS and CNT

Author:

Ryu Chaehyun,Park Jeonhyeong,Jung Soon In,Jang Il RyuORCID,Kim Hoe JoonORCID

Abstract

Accurate monitoring is needed for pulsating flow in many healthcare and bio applications. Specifically, real-time monitoring of pulsating blood flow provides rich information regarding a patient’s health conditions. This paper proposes a flexible strain sensor capable of detecting the pulsating fluid flow by directly measuring the circumferential strain induced by a rapid change in the flow rate. The thin and flexible strain sensor consists of a polydimethylsiloxane (PDMS) with a Triton-X treatment to enhance the adhesive property and multi-walled carbon nanotubes (MWCNT) as the piezoresistive sensing layer. MWCNT integration implements a simple spray-coating method. The adhesive PDMS/CNT strain sensor exhibits a highly adhesive nature and can be attached to a silicone tube’s curved surface. By analyzing the theoretical modeling based on fluid energy equation and solid mechanics, strains induced on the soft tube by the change in flow rate, viscosity, and fluid density can be predicted. We performed the flow rate measurement at varying fluid-flow rates and liquid viscosities, and the results match our prediction. The sensitivity and limit of detection of the presented strain sensor are about 0.55 %min/L and 0.4 L/min, respectively. Both the calculation and experiment confirm that the sensor resistance is most sensitive to the fluid-flow rate, thus, enabling the accurate tracking of pulsating fluids’ flow rate, regardless of the viscosity or density.

Funder

National Research Foundation of Korea

Daegu Gyeongbuk Institute of Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3