Abstract
Metal oxide semiconductors have found widespread applications in chemical sensors based on electrical transduction principles, in particular for the detection of a large variety of gaseous analytes, including environmental pollutants and hazardous gases. This review recapitulates the progress in copper oxide nanomaterial-based devices, while discussing decisive factors influencing gas sensing properties and performance. Literature reports on the highly sensitive detection of several target molecules, including volatile organic compounds, hydrogen sulfide, carbon monoxide, carbon dioxide, hydrogen and nitrogen oxide from parts-per-million down to parts-per-billion concentrations are compared. Physico-chemical mechanisms for sensing and transduction are summarized and prospects for future developments are outlined.
Funder
Svenska Forskningsrådet Formas
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献