Abstract
Fabrication of biocompatible electrodes for the investigation of catecholamines is a known challenge. In this work, methionine was chosen as a modifier for fabrication of a biocompatible carbon paste electrode by electropolymerization, through cyclic voltammetry. The electrochemical behavior of the poly(methionine) modified carbon paste electrode was characterized by cyclic voltammetry for simultaneous determination of dopamine (DA) and uric acid (UA) in a phosphate-buffered solution at pH 7.0. In the absence of an amino acid methionine layer, the bare carbon paste electrode exhibits rather poor voltammetric signals in DA and UA in the binary mixture, with oxidation potentials of DA and UA overlapping with each other. The poly(methionine) modified carbon paste electrode exhibits good catalytic activity with noticeably different oxidation potentials of DA and UA. The experimental results closely agree with the theoretical prediction based on a Fukui function complementary to the simulated electrostatic potential maps.
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献