Abstract
Microfluidic devices have enormous potential and a wide range of applications. However, most applications end up as chip-in-a-lab systems because of power source constraints. This work focuses on reducing the reliance on the power network and expanding on the concept of a lab-on-a-chip for microfluidic devices. A cellulose-based radiator to reflect infrared (IR) radiation with wavelengths within the atmospheric window (8–13 µm) into outer space was fabricated. This process lowered the temperature inside the insulated environment. The difference in temperature was used to power a thermoelectric generator (TEG) and generate an electric current. This electric current was run through a DC-DC transformer to increase the voltage before being used to perform electrical cell lysis with a microfluidic device. This experimental setup successfully achieved 90% and 50% cell lysis efficiencies in ideal conditions and in field tests, respectively. This work demonstrated the possibility of utilizing the unique characteristics of a microfluidic device to perform an energy-intensive assay with minimal energy generated from a TEG and no initial power input for the system. The TEG system also required less maintenance than solar, wind, or hydroelectricity. The IR radiation process naturally allows for more dynamic working conditions for the entire system.
Funder
National Research Foundation of Korea
Gachon University research fund of 2020
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献