Electrochemical Performance of Lithographically-Defined Micro-Electrodes for Integration and Device Applications

Author:

Hirbodvash Zohreh,Houache Mohamed S. E.,Krupin Oleksiy,Khodami MaryamORCID,Northfield HowardORCID,Olivieri Anthony,Baranova Elena A.ORCID,Berini PierreORCID

Abstract

Small; lithographically-defined and closely-spaced metallic features of dimensions and separation in the micrometer range are of strong interest as working and counter electrodes in compact electrochemical sensing devices. Such micro-electrode systems can be integrated with microfluidics and optical biosensors, such as surface plasmon waveguide biosensors, to enable multi-modal sensing strategies. We investigate lithographically-defined gold and platinum micro-electrodes experimentally, via cyclic voltammetry (CV) measurements obtained at various scan rates and concentrations of potassium ferricyanide as the redox species, in potassium nitrate as the supporting electrolyte. The magnitude of the double-layer capacitance is estimated using the voltammograms. Concentration curves for potassium ferricyanide are extracted from our CV measurements as a function of scan rate, and could be used as calibration curves from which an unknown concentration of potassium ferricyanide in the range of 0.5–5 mM can be determined. A blind test was done to confirm the validity of the calibration curve. The diffusion coefficient of potassium ferricyanide is also extracted from our CV measurements by fitting to the Randles–Sevcik equation (D = 4.18 × 10−10 m2/s). Our CV measurements were compared with measurements obtained using macroscopic commercial electrodes, yielding good agreement and verifying that the shape of our CV curves do not depend on micro-electrode geometry (only on area). We also compare our CV measurements with theoretical curves computed using the Butler–Volmer equation, achieving essentially perfect agreement while extracting the rate constant at zero potential for our redox species (ko = 10−6 m/s). Finally, we demonstrate the importance of burn-in to stabilize electrodes from the effects of electromigration and grain reorganization before use in CV measurements, by comparing with results obtained with as-deposited electrodes. Burn-in (or equivalently, annealing) of lithographic microelectrodes before use is of general importance to electrochemical sensing devices

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3