Development of an Online Instrument for Continuous Gaseous PAH Quantification: Laboratory Evaluation and Comparison with The Offline Reference UHPLC-Fluorescence Method

Author:

Vaz-Ramos Joana12ORCID,Mascles Mathilde3,Becker Anaïs1,Bourgain Damien3,Grandjean Audrey13ORCID,Bégin-Colin Sylvie2ORCID,Amiet Franck3,Bazin Damien3ORCID,Le Calvé Stéphane1ORCID

Affiliation:

1. Institut de Chimie et Procédés Pour l’Energie, l’Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France

2. Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, France

3. Chromatotec, 15 Rue d’Artiguelongue, 33240 Saint-Antoine, France

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants formed during incomplete combustion or pyrolysis of organic material. The reliable quantification of PAH in airborne samples is still difficult, costly, and time-consuming due to the use of offline techniques, including long sampling on filters/adsorbents, laboratory extraction, purification, and concentration steps before analysis. To tackle these drawbacks, this work focused on the development of a fully automatic gas chromatograph (GC) equipped with a flame ionization detector (FID) and a sample preconcentration unit (PC) for gas sampling. This instrument was validated under laboratory-controlled conditions in the range 0–10 ng for 18 PAH. The chromatographic separation was rather satisfactory except for two PAH pairs, which were quantified together. For all compounds, the peak areas increased perfectly with the gaseous PAH concentration (R2 > 0.98), without any significant memory effect between two consecutive analyses. Considering a gaseous sample volume of 1 L, the extrapolated limits of detections (LOD) were in the range 19.9–62.6 ng/m3, depending on the PAH. Its analytical performances were then compared to those of the offline reference UHPLC-fluorescence method, widely used for airborne PAH monitoring. This was also compared with the very few portable or continuously operating instruments.

Funder

GRAND-EST and ANR

CHROMATOEC

CAPTALL

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3