Colorimetric Detection and Killing of Bacteria by Enzyme-Instructed Self-Aggregation of Peptide-Modified Gold Nanoparticles

Author:

Yin Dan1,Li Xiao1,Wang Xin2,Liu Jin-Zhou1,She Wen-Zhi1,Liu Jiahui3,Ling Jian1ORCID,Li Rong Sheng1,Cao Qiue1

Affiliation:

1. National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China

2. Department of Orthopaedics, The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming 650051, China

3. Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, China

Abstract

Bacterial infections seriously threaten human safety. Therefore, it is very important to develop a method for bacterial detection and treatment with rapid response, high sensitivity, and simple operation. A peptide CF4KYP (C, cysteine; F4, phenylalanine tetrapeptide; K, lysine; YP, phosphorylated tyrosine) functionalized gold nanoparticle (AuNPs-CF4KYP) was synthesized for simultaneous detection and treatment of bacteria based on bacterial alkaline phosphatase (ALP). In solution, ALP can induce AuNPs-CF4KYP aggregation and produce significant color changes. After encountering bacteria, monodisperse AuNPs-CF4KYP can aggregate/assemble in situ on the surface of the bacterial membrane, change the color of the solution from wine red to grey, destroy the bacterial membrane structure, and induce the production of a large number of reactive oxygen species within the bacteria. The absorption change of AuNPs-CF4KYP solution has a good linear relationship with the number of bacteria. Furthermore, the aggregation of AuNPs-CF4KYP kills approximately 80% of Salmonella typhimurium. By combining enzyme-instructed peptide self-assembly technology and colorimetric analysis technology, we achieve rapid and sensitive colorimetric detection and killing of bacteria.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3