Fabrication of Electrochemical Sensor for the Detection of Mg(II) Ions Using CeO2 Microcuboids as an Efficient Electrocatalyst

Author:

Muruganandam Girdega1,Nesakumar Noel12,Kulandaisamy Arockia Jayalatha3,Rayappan John Bosco Balaguru23,Gunasekaran Balu Mahendran4ORCID

Affiliation:

1. School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India

2. Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India

3. School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India

4. Department of Chemistry, A.V.V.M Sri Pushpam College (Autonomous), Bharathidasan University, Poondi 613503, Tamil Nadu, India

Abstract

In human blood serum, the concentration of magnesium ions typically ranges from 0.7 mM to 1.05 mM. However, exceeding the upper limit of 1.05 mM can lead to the condition known as hypermagnesemia. In this regard, a highly sensitive and selective electrochemical sensor for Mg(II) ion detection was successfully fabricated by immobilizing cerium oxide (CeO2) microcuboids, synthesized via microwave radiation method, onto the surface of glassy carbon electrode (GCE). Cyclic voltammetry studies revealed the exceptional electrocatalytic effect of CeO2 microcuboid-modified GC electrode, particularly in relation to the irreversible reduction signal of Mg(II). The microcuboid-like structure of CeO2 microparticles facilitated enhanced adsorption of Mg(II) ion (Γ=2.17×10−7mol cm−2) and electron transfer (ks=8.94 s−1) between the adsorbed Mg(II) ions and GCE. A comprehensive analysis comparing the performance characteristics of amperometry, differential pulse voltammetry, cyclic voltammetry, and square wave voltammetry was conducted. The square wave voltammetry-based Mg(II) sensor exhibited remarkable sensitivity of 2.856 μA mM−1, encompassing a broad linear detection range of 0–3 mM. The detection and quantification limits were impressively low, with values of 19.84 and 66.06 μM, respectively. Remarkably, the developed electrode showed a rapid response time of less than 140 s. Multiple linear regression and partial least squares regression models were employed to establish a mathematical relationship between magnesium ion levels and electrochemical parameters. Notably, the proposed sensor exhibited excellent anti-interferent ability, repeatability, stability, and reproducibility, enabling the fabricated electrode to be used effectively for Mg(II) ion sensing in real-world samples.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3